Structural peptides of a nonenveloped virus are involved in assembly and membrane translocation.
نویسندگان
چکیده
The capsid of infectious bursal disease virus (IBDV), a nonenveloped virus of the family Birnaviridae, has a T=13l icosahedral shell constituted by a single protein, VP2, and several disordered peptides, all derived from the precursor pVP2. In this study, we show that two of the peptides, pep11 and pep46, control virus assembly and cell entry. Deletion of pep11 or even simple substitution of most of its residues blocks the capsid morphogenesis. Removal of pep46 also prevents capsid assembly but leads to the formation of subviral particles formed by unprocessed VP2 species. Fitting with the VP2 atomic model into three-dimensional reconstructions of these particles demonstrates that the presence of uncleaved pep46 causes a steric hindrance at the vertices, blocking fivefold axis formation. Mutagenesis of the pVP2 maturation sites confirms that C terminus processing is necessary for VP2 to acquire the correct icosahedral architecture. All peptides present on virions are accessible to proteases or biochemical labeling. One of them, pep46, is shown to induce large structural rearrangements in liposomes and to destabilize target membranes, demonstrating its implication in cell entry.
منابع مشابه
Structural and functional properties of an unusual internal fusion peptide in a nonenveloped virus membrane fusion protein.
The avian and Nelson Bay reoviruses are two of only a limited number of nonenveloped viruses capable of inducing cell-cell membrane fusion. These viruses encode the smallest known membrane fusion proteins (p10). We now show that a region of moderate hydrophobicity we call the hydrophobic patch (HP), present in the small N-terminal ectodomain of p10, shares the following characteristics with the...
متن کاملPeptides released from reovirus outer capsid form membrane pores that recruit virus particles.
Nonenveloped animal viruses must disrupt or perforate a cell membrane during entry. Recent work with reovirus has shown formation of size-selective pores in RBC membranes in concert with structural changes in capsid protein mu1. Here, we demonstrate that mu1 fragments released from reovirus particles are sufficient for pore formation. Both myristoylated N-terminal fragment mu1N and C-terminal f...
متن کاملRafts promote assembly and atypical targeting of a nonenveloped virus, rotavirus, in Caco-2 cells.
Rotavirus follows an atypical pathway to the apical membrane of intestinal cells that bypasses the Golgi. The involvement of rafts in this process was explored here. VP4 is the most peripheral protein of the triple-layered structure of this nonenveloped virus. High proportions of VP4 associated with rafts within the cell as early as 3 h postinfection. In the meantime a significant part of VP4 w...
متن کاملApplying conserved peptides of NS1 Protein of avian influenza virus to differentiate infected from vaccinated chickens
Avian influenza (AI) is a highly contagious disease in poultry and outbreaks can have dramatic economic and health implications. For effective disease surveillance, rapid and sensitive assays are needed to detect antibodies against AI virus (AIV) proteins. In order to support eradication efforts of avian influenza (AI) infections in poultry, the implementation of “DIVA” vaccination strategies, ...
متن کاملLow endocytic pH and capsid protein autocleavage are critical components of Flock House virus cell entry.
The process by which nonenveloped viruses cross cell membranes during host cell entry remains poorly defined; however, common themes are emerging. Here, we use correlated in vivo and in vitro studies to understand the mechanism of Flock House virus (FHV) entry and membrane penetration. We demonstrate that low endocytic pH is required for FHV infection, that exposure to acidic pH promotes FHV-me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 79 19 شماره
صفحات -
تاریخ انتشار 2005